
Introduction to FreeRTOS
Kizito NKURIKIYEYEZU, Ph.D.

What is FreeRTOS?
FreeRTOS is an open source real-time operating system (RTOS) for
embedded systems.
FreeRTOS supports many different architectures and compiler toolchains, and
is designed to be small, simple, and easy to use.
It provides many features: neat and readable source code, it is portable,
scalable, provides preemptive and co-operative scheduling, has multitasking
and interrupt management

What is FreeRTOS?
An open source, real-time operating system for small, low-power edge
devices easy to program, deploy, secure, connect, and manage.
Includes libraries for connecting to Amazon Web Services (AWS) web
services and other edge devices running AWS IoT Greengrass.
FreeRTOS is built with an emphasis on reliability and ease of use, and offers
the predictability of long term support releases.

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 1 / 28

What is FreeRTOS?
FreeRTOS is the most popular RTOS for small embedded MCU1

Originally developed by Richard Barry around 2003
Since 2017 it is developed and maintained by Amazon Web Services.
FreeRTOS is a real-time kernel targeting at hard real-time applications.
Primarily written in C with few assembler functions
FreeRTOS has a very small footprint2,3

It supports many compilers (CodeWarrior, GCC, IAR, etc.) as well as many
processor architectures (ARM7, various PICs, 8051, x86, etc.).

1The most recent Embedded Markets Study shows that Embedded Linux and FreeRTOS
continue to outpace other operating systems used in embedded development.

2The FreeRTOS scheduler requires 236 bytes of RAM and about 5 to 10 KBytes of ROM. Task
creation require an additional 64 bytes of stack. See more at https://www.freertos.org/FAQMem.html

3FreeRTOS is a relatively small application. The minimum core of FreeRTOS is only three source
(.c) files and a handful of header files, totalling just under 9000 lines of code, including comments
and blank lines. A typical binary code image is less than 10KB.

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 2 / 28

https://www.embedded.com/2019-embedded-markets-study-reflects-emerging-technologies-continued-c-c-dominance/
https://www.freertos.org/FAQMem.html

FIG 1. Most popular non-linux OS for IoT development4, 5

4https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2019.pdf
5https://www.andplus.com/blog/which-operating-system-should-you-use-for-your-iot-solution
Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 3 / 28

https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2019.pdf
https://www.andplus.com/blog/which-operating-system-should-you-use-for-your-iot-solution

FreeRTOS Architecture overview
FreeRTOS’s code breaks down into three main areas: tasks, communication, and
hardware interfacing.

tasks.c6 and task.h7 allow creating, scheduling, and maintaining tasks.
about 40% of FreeRTOS’s core code deals with communication. queue.c8 and
queue.h9 handle FreeRTOS communication. Tasks and interrupts use queues
to send data to each other and to signal the use of critical resources using
semaphores and mutexes.
The Hardware Whisperer—Much code in FreeRTOS kernel is
hardware-independent. About 6% of FreeRTOS’s core code acts a shim
between the hardware-independent FreeRTOS core and the
hardware-dependent code as shown in Figure 2.

6https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/tasks.c
7https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/include/task.h
8https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/queue.c
9https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/include/queue.h
Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 4 / 28

https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/tasks.c
https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/include/task.h
https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/queue.c
https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/include/queue.h

FIG 2. Summary of the FREERTOS porting layer
Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 5 / 28

Task Management

Tasks in FreeRTOS
With FreeRTOS, application can be structured as a set of autonomous tasks
Each task executes within its own context (e.g., stack) with no coincidental
dependency on other tasks
The scheduler starts, stops, swaps in, and swaps out tasks as needed
Each task has a user-assigned priority

low priority —tskIDLE_PRIORITY or idle task priority. It’s equal to zero
configMAX_PRIORITIES-1 is the highest priority10

It uses a “ready list” to keep track of all tasks that are currently ready to run.

1 static xList pxReadyTasksLists[configMAX_PRIORITIES];

pxReadyTasksLists[0] is a list of all ready priority 0 tasks
pxReadyTasksLists[1] is a list of all ready priority 1 tasks, and so on,
pxReadyTasksLists[configMAX_PRIORITIES-1] is the highest priority.

10configMAX_PRIORITIES is defined within FreeRTOSConfig.h. FreeRTOSConfig.h is
application-specific and allows to customize the functionality of the RTOS kernel to the application
being built. See https://www.freertos.org/a00110.html

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 6 / 28

https://www.freertos.org/a00110.html

The System Tick
System tick—user-configurable heartbeat of a FreeRTOS system
FreeRTOS configures the system to generate a periodic tick interrupt.
User configurable but typically in the millisecond range.
On each tick interrupt, the vTaskSwitchContext() function is called and selects
the highest-priority ready task and puts it in the pxCurrentTCB variable

1 //Find the highest-priority queue that contains ready tasks.
2 while(listLIST_IS_EMPTY(&(pxReadyTasksLists[

uxTopReadyPriority]))){
3 configASSERT(uxTopReadyPriority);
4 --uxTopReadyPriority;
5 }
6 //Make sure that tasks of the same priority get an equal

share of the processor time.
7 listGET_OWNER_OF_NEXT_ENTRY(pxCurrentTCB, &(

pxReadyTasksLists[uxTopReadyPriority]));

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 7 / 28

Tasks and task states

A task is functions in RTOS
A task can have the following states:

Running—the task is using
microprocessor to execute
instructions
Ready —the task has instructions
for microprocessor to execute, but
is not yet executing, perhaps
because another higher priority
task is running
Blocked —the task has nothing for
microprocessor, waiting for external
event (e.g., a button press) to
occur for it to run again

FIG 3. Common RTOS task states

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 8 / 28

Tasks and task states
An application can consist of many tasks
Only one task of the application can be executed at any given time on the
microcontroller (single core)
Thus, a task can exist in one of two states: Running or Not Running
Only the scheduler can decide which task should enter the Running state
A task is said to have been switched in or swapped in when transitioned from
the Not Running to the Running state
A task is said to have been switched out or swapped out when transitioned
from the running state to the not-running state

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 9 / 28

FIG 4. FreeRTOS tasks and task states

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 10 / 28

Tasks and task states
New tasks are placed immediately in the Ready state
The Ready list is arranged in order of priority with tasks of equal priority being
serviced on a round-robin basis.
The implementation of FreeRTOS actually uses multiple Ready lists – one at
each priority level (Figure 5)

FIG 5. Illustration of FreeRTOS Ready Task List Data Structure

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 11 / 28

Tasks Functions
Tasks are implemented as C functions
The prototype of a task function must return void and take a void pointer
parameter
A task will typically execute indefinitely in an infinite loop: must never terminate
by attempting to return to its caller
If required, a task can delete itself prior to reaching the function end
A single task function definition can be used to create any number of tasks

Each created task is a separate execution instance
Each created task has its own stack
Each created task has its own copy of any automatic variables defined within the
task itself

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 12 / 28

Tasks Functions
Tasks are defined as a functions that return void and takes a void pointer as its
only parameter.
The parameter can be used to pass information of any type into the task
Task functions should never return so are typically implemented as a
continuous loop.
Attempting to do so will result in an configASSERT() being called if it is defined.
Call vTaskDelete(NULL) to ensure its exit is clean.

1 void vTaskFunction(void *pvParameters){
2 while (true)
3 {
4 -- Task application code here. --
5 }
6 //In normal conditions, this code should never execute.
7 vTaskDelete(NULL);
8 }

LISTING 1: Skeleton of a FreeRTOS task
Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 13 / 28

Create a Task
1 BaseType_t xTaskCreate(
2 /* Function that implements the task. */
3 TaskFunction_t pvTaskCode,
4 /* Text name for the task. */
5 const char * const pcName,
6 /* Stack size in words, not bytes. */
7 configSTACK_DEPTH_TYPE usStackDepth,
8 /* Parameter passed into the task. */
9 void *pvParameters,

10 /* Priority at which the task is created. */
11 UBaseType_t uxPriority,
12 /* Used to pass out the created task’s handle. */
13 TaskHandle_t *pxCreatedTask
14);

LISTING 2: Excerpt of the FreeRTOS task control block

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 14 / 28

TAB 1. Parameters of the FreeRTOS’s xTaskCreate function

pvTaskCode Pointer to the task entry function (just the name of the function that implements the task).
pcName A descriptive name for the task. This is mainly used to facilitate debugging, but can also

be used to obtain a task handle.The maximum length of a task’s name is defined by config-
MAX_TASK_NAME_LEN in FreeRTOSConfig.h.

usStackDepth The number of words (not bytes!) to allocate for use as the task’s stack. For example, if the stack is
16-bits wide and usStackDepth is 100, then 200 bytes will be allocated for use as the task’s stack.

pvParameters A value that is passed as the paramater to the created task. If pvParameters is set to the address of
a variable then the variable must still exist when the created task executes - so it is not valid to pass
the address of a stack variable.

uxPriority The priority at which the created task will execute. Priorities are asserted to be less than con-
figMAX_PRIORITIES. If configASSERT is undefined, priorities are silently capped at (config-
MAX_PRIORITIES - 1).

pxCreatedTask Used to pass a handle to the created task out of the xTaskCreate() function. pxCreatedTask is
optional and can be set to NULL.

Return values
pdTRUE—when the task was created successfully
errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY—the task could not be
created because there was insufficient heap memory

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 15 / 28

Not Running State
Blocked state—A task that is waiting for an event
Tasks can enter the blocked state to wait for two different types of event

Time related events where a delay period expiring or an absolute time being
reached. For example, when the vTaskDelay()11 function is called
Synchronization events where the events originate from another task or interrupt.
For example, wait for data to arrive on a queue

It is possible for a task to block on a synchronization event with a timeout .For
example, wait for a maximum of 10 ms for data to arrive on a queue
The Suspended state: tasks in the Suspended state are not available to the
scheduler.

A task can be suspended through a call to the vTaskSuspend()12API function
A suspended task can be resumed via a call to the vTaskResume()13 or
xTaskResumeFromISR()14 API functions

11https://www.freertos.org/a00127.html
12https://www.freertos.org/a00130.html
13https://www.freertos.org/a00131.html
14https://www.freertos.org/taskresumefromisr.html
Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 16 / 28

https://www.freertos.org/a00127.html
https://www.freertos.org/a00130.html
https://www.freertos.org/a00131.html
https://www.freertos.org/taskresumefromisr.html

Not Running State
Ready State—tasks that are able to execute (they are not in the Blocked or
Suspended state) but are not currently executing because a different task of
equal or higher priority is already in the Running state. Tasks are able to run,
and therefore “ready” to run, but not currently in the Running state
When a task is first created and made ready to run, the kernel puts it into the
ready state. In this state, the task actively competes with all other ready tasks
for the processor’s execution time.
Ready tasks can only move to the running state. Because many tasks might
be in the ready state, the kernel’s scheduler uses the priority of each task to
determine which task to move to the running state.
Tasks in the ready state cannot move directly to the blocked state. They first
need to run so they can make a blocking call
Because many tasks might be in the ready state, the kernel’s scheduler uses
the priority of each task to determine which task to move to the running state.

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 17 / 28

Time & delay
Functions like the Arduino delay()15 generate delay using a null loop and poll a
counter until it reaches a fixed value. This waste processor cycles

1 void delay(unsigned long ms){
2 uint16_t start = (uint16_t)micros();
3 while (ms > 0){
4 yield();
5 if (((uint16_t)micros() - start) >= 1000){
6 ms--;
7 start += 1000;
8 }
9 }

10 }

Such functions are called blocking delays because they block code execution
until they returns—which means nothing else can run while they are running.
Non-blocking delays provide a way to use time delays without blocking the
processor, so it can do other things while the functions create the delay.

15https://github.com/arduino/ArduinoCore-samd/blob/master/cores/arduino/delay.c
Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 18 / 28

https://github.com/arduino/ArduinoCore-samd/blob/master/cores/arduino/delay.c

Time & delay
FreeRTOS’s vTaskDelay()16 API function is non-blocking

vTaskDelay() places the calling task into the Blocked state for a fixed number of
tick interrupts
The task in the Blocked state will not use any processing time at all

1 void vTaskDelay(const TickType_t xTicksToDelay);

xTicksToDelay is the number of tick interrupts that the calling task should remain
in the Blocked state before being transitioned back into the Ready state.
The constant portTICK_RATE_MS stores the time in milliseconds of a tick, which
can be used to convert milliseconds into ticks.

1 // delay for 500ms.
2 vTaskDelay(500/portTICK_RATE_MS);

An alternative method is to use the vTaskDelayUntil()17 API function

16https://www.freertos.org/a00127.html
17https://www.freertos.org/vtaskdelayuntil.html
Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 19 / 28

https://www.freertos.org/a00127.html
https://www.freertos.org/vtaskdelayuntil.html

Time & delay
The length of a tick depends on the operating system configuration and, to
some extent, on hardware capabilities.
The configuration macro configTICK_RATE_HZ represents the configured tick
frequency in Hertz and may be useful to convert back and forth between the
usual time measurement units and clock ticks.
For instance, the quantity 1000000/configTICK_RATE_HZ is the tick length,
approximated as an integer number of microsecond.
The function TickType_t xTaskGetTickCount(void) returns the current time as
the number of ticks elapsed since the operating system scheduler was started.

TAB 2. Time-Related Primitives of FREERTOS

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 20 / 28

vTaskDelayUntil() API18

1 void vTaskDelayUntil(TickType_t *pxPreviousWakeTime,const
TickType_t xTimeIncrement);

pxPreviousWakeTime—Pointer to a variable that holds the time at which the
task was last unblocked. The variable must be initialised with the current time
prior to its first use (see the example below). Following this the variable is
automatically updated within vTaskDelayUntil().
xTimeIncrement—The cycle time period. The task will be unblocked at time
(*pxPreviousWakeTime + xTimeIncrement). Calling vTaskDelayUntil with the
same xTimeIncrement parameter value will cause the task to execute with a
fixed interval period.

18INCLUDE_vTaskDelayUntil must be defined as 1 for this function to be available. See the RTOS
Configuration documentation for more information.

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 21 / 28

vTaskDelayUntil() API
1 void vTaskBlinkLed(void* pvParameters){
2 // set pin PB0 of PORTB for output
3 DDRB |= (1<<PB0);
4 TickType_t xLastWakeTime = xTaskGetTickCount();
5 while (true) {
6 // Toggle the 1st bit on PORT B (i.e. PB0)
7 PORTB ^= (1<<PB0);
8 vTaskDelayUntil(&xLastWakeTime, (1000/ portTICK_PERIOD_MS));
9 }

10 vTaskDelete(NULL);
11 }

LISTING 3: Example of using the vTaskDelayUntil() and blink an LED every 500ms

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 22 / 28

FIG 6. Relative versus absolute delays

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 23 / 28

Task Priority
Higher priorities task run before lower priority task
Tasks with the same priority share CPU time (in time slices)
The scheduler runs at the end of each time slice to select the next task to run
The length of the time slice is set by the SysTick interrupt frequency by
configuring the configTICK_RATE_HZ while setting the compile configuration
in FreeRTOSConfig.h
The initial priority of a task is assigned when created by using xTaskCreate()
The task priority can be queried by using the xTaskPriorityGet()
The task priority can be changed by using vTaskPrioritySet()
Low numeric values denote low priority tasks (0 is the lowest priority)

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 24 / 28

FIG 7. Comparison between relative and absolute time delays, as implemented by vTaskDelay and
vTaskDelayUntil.—An absolute delay is better when a task has to carry out an operation periodically
because it guarantees that the period will stay constant even if the response time of the task—the
grey rectangles in Figure—varies from one instance to another

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 25 / 28

Idle Task and Idle Task Hook Functions
The idle task is executed when no application tasks are in running state19

The idle task is automatically created by the scheduler when
vTaskStartScheduler() is called
The idle task has the lowest possible priority(priority 0) to ensure it never
prevents a higher priority application task
Application specific functionality can be directly added into the idle task via an
idle hook (or call-back) function

An idle hook function is automatically called per iteration of the idle task loop
Can be utilized to execute low priority, background or continuous processing

1 void vApplicationIdleHook(){}
2 void vApplicationTickHook(){}
3 void vApplicationAssertHook(){}
4 void vApplicationMallocFailedHook(){}

19https://www.freertos.org/a00016.html
Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 26 / 28

https://www.freertos.org/a00016.html

TAB 3. Summary of the task-related primitives of FreeRTOS20

20The elements marked with * are optional; they may or may not be present, depending on the
FreeRTOS configuration

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 27 / 28

Remarks
When main() executes, the FreeRTOS’s scheduler is not yet active. It can be
explicitly started and stopped by means of the following function calls

1 void vTaskStartScheduler(void);
2 void vTaskEndScheduler(void);

The function vTaskStartScheduler() reports errors back to the caller in an
unusual way:

When it is able to start the scheduler successfully, vTaskStartScheduler does not
return to the caller at all
Otherwise, vTaskStartScheduler() may return to the caller for two distinct reasons:

1 The scheduler was successfully started, but one of the tasks then stopped it by
invoking vTaskEndScheduler().

2 The scheduler was not started at all because an error occurred.
After creation, it is possible to change the priority of a task or retrieve it by
means of the functions

1 void vTaskPrioritySet(TaskHandle_t task,UBaseType_t priority);
2 UBaseType_t uxTaskPriorityGet(TaskHandle_t xTask);

Kizito NKURIKIYEYEZU, Ph.D. Introduction to FreeRTOS January 29, 2023 28 / 28

The end

	Task Management
	The end

